DO NOW:

- 1) Which is the hottest of the following layers of the sun: photosphere, chromosphere, corona
- 2) How long is the entire sun cycle of sun spots?
- 3) What heats the plasma in corona to make it so hot?

Today's Objectives:

- Understand parallax and it's limits
- Know how the magnitude system works (and its querks)
- Learn about the classification of stars and the system used to do so
- Understand the H-R Diagram and where our Sun falls on the diagram

Page 381 #12-16

Luminosity

The amount of energy radiated each second (L)

Light Bulb - 100 watts
Parking lot light - 1500 watts
Sun - 4 x 10²⁶ watts

Inverse Square Law

Magnitudes of Brightness

Book page 360 - Read "The Magnitude System"

1) Write down the three "confusing properties" of magnitude and *why* they are the way they are

- 1) The scale is "backward" bright stars have low magnitudes, dim stars have large magnitudes
- 2) Difference correspond to brightness ratios
 For example: a first magnitude is **100 times brighter** than a sixth magnitude.

Each magnitude is about 2.512 times

brighter than the last (1st is 6.31 times brighter than 3rd)

How much brighter is 2nd than 6th?

3) "absolute magnitude" vs "apparent magnitude"... to solve the issue a standard was created... 10 parsecs distance

Why? - Hipparchus measured apparent magnitudes, and they were never really changed....

Star Visual	Apparent Magnitude	Distance(pc)	Absolute Magnitude	Luminosity (rel. to Sun)
Sun	-26.74	4.84813×10 ⁻⁶	4.83	1
Sirius	-1.44	2.6371	1.45	22.5
Arcturus	-0.05	11.25	-0.31	114
Vega	0.03	7.7561	0.58	50.1
Spica	0.98	80.39	-3.55	2250
Barnard's Star	9.54	1.8215	13.24	1/2310
Proxima Centauri	11.01	1.2948	15.45	1/17700

Spectral Type of Stars

TABLE 11.1 The Spectral Sequence

Spectral Type	Example(s)	Temperature Range	Key Absorption Line Features	Brightest Wavelength (color)		Typical Spectrum	
0	Stars of Orion's Belt	7 30,000 K	Lines of ionized helium, weak hydrogen lines	6 97 nm (ultraviolet)*	0	hydrogen	
В	Rigel	30,000 K- 10,000 K	Lines of neutral helium, moderate hydrogen lines	97–290 nm (ultraviolet)*	В		
A	Sirius	10,000 K- 7,500 K	Very strong hydrogen lines	290–390 nm (violet)*	A		
F	Polaris	7,500 K- 6,000 K	Moderate hydrogen lines, moderate lines of ionized calcium	390–480 nm (blue)*	F		
G	Sun, Alpha Centauri A	6,000 K- 5,000 K	Weak hydrogen lines, strong lines of ionized calcium	480–580 nm (yellow)	G		
K	Arcturus	5,000 K- 3,500 K	Lines of neutral and singly ionized metals, some molecules	580–830 nm (red)	к		
M	Betelgeuse, Proxima Centauri	63,500 K	Molecular lines strong	7 830 nm (infrared)	M II ionized calcium	titanium sodium titanium oxide oxide	

All stars above 6,000 K look more or less white to the human eye because they emit plenty of radiation at all visible wavelengths.

