DO NOW: - 1) Which is the hottest of the following layers of the sun: photosphere, chromosphere, corona - 2) How long is the entire sun cycle of sun spots? - 3) What heats the plasma in corona to make it so hot? #### Today's Objectives: - Understand parallax and it's limits - Know how the magnitude system works (and its querks) - Learn about the classification of stars and the system used to do so - Understand the H-R Diagram and where our Sun falls on the diagram Page 381 #12-16 ## Luminosity The amount of energy radiated each second (L) Light Bulb - 100 watts Parking lot light - 1500 watts Sun - 4 x 10²⁶ watts #### **Inverse Square Law** #### **Magnitudes of Brightness** Book page 360 - Read "The Magnitude System" 1) Write down the three "confusing properties" of magnitude and *why* they are the way they are - 1) The scale is "backward" bright stars have low magnitudes, dim stars have large magnitudes - 2) Difference correspond to brightness ratios For example: a first magnitude is **100 times brighter** than a sixth magnitude. Each magnitude is about 2.512 times brighter than the last (1st is 6.31 times brighter than 3rd) How much brighter is 2nd than 6th? 3) "absolute magnitude" vs "apparent magnitude"... to solve the issue a standard was created... 10 parsecs distance Why? - Hipparchus measured apparent magnitudes, and they were never really changed.... | Star
Visual | Apparent
Magnitude | Distance(pc) | Absolute
Magnitude | Luminosity
(rel. to Sun) | |---------------------|-----------------------|--------------------------|-----------------------|-----------------------------| | Sun | -26.74 | 4.84813×10 ⁻⁶ | 4.83 | 1 | | Sirius | -1.44 | 2.6371 | 1.45 | 22.5 | | Arcturus | -0.05 | 11.25 | -0.31 | 114 | | Vega | 0.03 | 7.7561 | 0.58 | 50.1 | | Spica | 0.98 | 80.39 | -3.55 | 2250 | | Barnard's
Star | 9.54 | 1.8215 | 13.24 | 1/2310 | | Proxima
Centauri | 11.01 | 1.2948 | 15.45 | 1/17700 | # Spectral Type of Stars TABLE 11.1 The Spectral Sequence | Spectral
Type | Example(s) | Temperature
Range | Key Absorption
Line Features | Brightest
Wavelength
(color) | | Typical Spectrum | | |------------------|------------------------------------|-----------------------|---|------------------------------------|-------------------------------|--------------------------------------|--| | 0 | Stars of
Orion's Belt | 7 30,000 K | Lines of ionized
helium, weak
hydrogen lines | 6 97 nm
(ultraviolet)* | 0 | hydrogen | | | В | Rigel | 30,000 K-
10,000 K | Lines of neutral
helium, moderate
hydrogen lines | 97–290 nm
(ultraviolet)* | В | | | | A | Sirius | 10,000 K-
7,500 K | Very strong
hydrogen lines | 290–390 nm
(violet)* | A | | | | F | Polaris | 7,500 K-
6,000 K | Moderate
hydrogen lines,
moderate lines of
ionized calcium | 390–480 nm
(blue)* | F | | | | G | Sun, Alpha
Centauri A | 6,000 K-
5,000 K | Weak hydrogen
lines, strong lines
of ionized calcium | 480–580 nm
(yellow) | G | | | | K | Arcturus | 5,000 K-
3,500 K | Lines of neutral
and singly ionized
metals, some
molecules | 580–830 nm
(red) | к | | | | M | Betelgeuse,
Proxima
Centauri | 63,500 K | Molecular lines
strong | 7 830 nm
(infrared) | M
II
ionized
calcium | titanium sodium titanium oxide oxide | | All stars above 6,000 K look more or less white to the human eye because they emit plenty of radiation at all visible wavelengths.